
Enigma Documentation
Release 0.1.0.dev0

Enigma Contributors

May 12, 2018

Contents

1 Contents 3
1.1 License . 3
1.2 Contributors . 3
1.3 Contributing . 4
1.4 Installation . 4
1.5 User Manual . 6
1.6 Developer Handbook . 8
1.7 enigma . 15

2 Indices and tables 17

Python Module Index 19

i

ii

Enigma Documentation, Release 0.1.0.dev0

This is the documentation of Enigma.

Contents 1

Enigma Documentation, Release 0.1.0.dev0

2 Contents

CHAPTER 1

Contents

1.1 License

MIT License

Copyright (c) 2018 Unethical Discord

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

1.2 Contributors

• Vivek Joshy <daegontaven@gmail.com>

3

mailto:daegontaven@gmail.com

Enigma Documentation, Release 0.1.0.dev0

1.3 Contributing

1.3.1 Style Guide

All pull requests to the python source must follow PEP 8 conventions.

All methods and functions must be in snake_case and not camelCase. If a module is written in python, it must also
conform to the 79 character limit.

1.3.2 Pull Requests

We follow Github Flow as our workflow when creating pull requests. It is a neater and easier way to manage changes.
You are also responsible for writing tests(where applicable) if you are contributing to a core module. If we see an area
of code that requires tests, then we will not accept the PR until you write a test for that area of code. Tests ensure long
term stability.

Also note that there are CI checks in place. If any automated tests fail, please rework and resubmit your PR.

1.4 Installation

Warning: Enigma is pre-alpha and highly unstable. Do not use this in production as API changes will take place
rapidly without notice.

1.4.1 Installing the bot

For Users

Todo: Add instructions for Docker, Kubernetes and pip wheel releases.

Follow the developer instructions for now and verify you have a working installation with this command.

$ enigma -V # This should show the current version.
enigma 0.1.0.dev0

For Developers

Installing from source

Enigma is very easy to install from source. First clone the latest development version from the master branch.

git clone https://github.com/UnethicalDiscord/Enigma.git

Since Enigma has a lot of dependencies, it is wise to install a virtualenv first. Please do not use pipenv however. It’s
incompatible with Enigma’s dependencies and may cause more problems in the future. If you wish to submit a pull
request to fix this problem please read more here

First let’s make a virtualenv. So we have to install it first.

4 Chapter 1. Contents

https://www.python.org/dev/peps/pep-0008/
https://guides.github.com/introduction/flow/
https://docs.pipenv.org/
https://github.com/pypa/pipenv/issues/1578

Enigma Documentation, Release 0.1.0.dev0

pip install virtualenv

Then create a new virtualenv within the repository. If you name it venv it won’t get checked in.

cd Enigma/
virtualenv venv

Now let’s activate the virtual environment.

source venv/bin/activate

You should now see your terminal change to show your are you now using a virtual environment. Let’s install the
package dependencies now. This may take a while depending on your machine.

pip install -r requirements.txt

Now let’s install it locally as an editable installation to make sure our changes get picked up.

pip install -e .

Additionally, if you need to write tests run this command.

pip install -e .[TESTS]

1.4.2 Configuring a database

Enigma does not come with it’s own database. So we need to install and configure one to make sure Enigma works
properly. Currently Enigma uses MongoDB to store all it’s data.

You need to either setup one using Google Cloud like we are in production or set one up yourself on a bare metal
server or a VPS. Either ways, it is outside the scope of this documentation for the most part.

You can read more about setting up a database by following the official MongoDB documentation Once you’ve suc-
cessfully done this, we need to setup an administrator with superuser capabilites. You can read more about setting this
up here

To do this, first we need to open up the mongo shell and create our user adjusting the commands below as needed.

use admin
db.createUser(

{
user: "myUserAdmin",
pwd: "abc123",
roles: [{ role: "root", db: "admin" }]

}
)

This will create a superuser role giving Enigma complete control over the database. Take these credentials down as
will you need to use them in the config file.

For Developers

Read the Developer Handbook to start contributing.

1.4. Installation 5

https://docs.mongodb.com/manual/administration/install-community/
https://docs.mongodb.com/manual/tutorial/enable-authentication/#enable-auth

Enigma Documentation, Release 0.1.0.dev0

1.5 User Manual

1.5.1 Basic Usage Instructions

Configuring Enigma

To start using Enigma, we to get some configuration details. First let’s make sure Enigma is installed.

$ enigma -V
enigma 0.1.0.dev

Looks good! So, we need to head over to the discord developers portal and create our bot user.

Now this is the most important part. We need to create a configuration file which is also valid TOML.

[bot]

token = ""

[database]

host = []

(continues on next page)

6 Chapter 1. Contents

https://discordapp.com/developers/applications/me/create

Enigma Documentation, Release 0.1.0.dev0

(continued from previous page)

port =
username = ""
password = ""
database = ""

[global]

prefixes = []
description = ""

To fill this out we need to know some details about our discord bot user. Simply scrolling down and clicking “Create
a Bot User” will do the job.

Next click to reveal the token.

Fig. 1: Make sure to copy this token down!

For now we won’t be delving in making our bot public and we’ll stick to using our bot privately in a server of our
choice. Save your changes and use this link replacing BOT_CLIENT_ID with your bot’s client ID to invite Enigma
to our server,

Invite Link : https://discordapp.com/api/oauth2/authorize?
client_id=BOT_CLIENT_ID&permissions=8&scope=bot

You can get the client ID from your bot’s app page.

1.5. User Manual 7

Enigma Documentation, Release 0.1.0.dev0

Now that we have all the details, we can start filling in our config file. It should look something like this. You should
also already have your database connection details. If not, read Configuring a database.

[bot]

token = "NDI2MTE3OTg5MTA1MTM5NzEy.DZRbXQ.CYHYtqRXjWYgJO9PqLoIv-HT8SE"

[database]

host = ["myvps.com"] # This can also be a list of hosts (including replica sets)
port = 27017
username = "pingbot"
password = "ilov3bacon"
database = "pingbot"
replica_set = "rs0" # This is needed added when using replica sets

[global]

prefixes = ["+" , ">"]
description = "I will ping you back. Don't worry!"

Starting Enigma

Now that we have a config file ready. Let’s save it is somewhere. By convention, it’s named app.cfg.

Now let’s tell Enigma to start by passing the path to this file as an argument.

enigma start --config /path/to/app.cfg

Note: You can also place it in the enigma/app.cfg folder of the repository if you installed from source. However,
you must make sure to name it app.cfg in this case or Enigma will throw an error.

1.6 Developer Handbook

1.6.1 Introduction

Building a discord bot can sometimes be overwhelming if you need complex commands. Keeping track of logging,
configuration files, databases, efficiency, sharding, devops and more. With Enigma you don’t have to worry about the
boring parts and focus on building your commands the way you need them.

8 Chapter 1. Contents

Enigma Documentation, Release 0.1.0.dev0

Prerequisite Knowledge

Simple Commands

• You must have built a very basic bot using discord.py

• Basic experience with asyncio

Advanced Commands

• Experience using relational databases

• Knowledge of MongoDB (not mandatory unless you want to access the database directly)

Terminology

Before we begin building commands, there’s some jargon you need to get familiar with.

Cogs:

Quoting add_cog in the discord.py documentation.

“A cog is a class that has its own event listeners and commands.

They are meant as a way to organize multiple relevant commands into a singular class that shares some
state or no state at all.”

Extensions:

From the discord.py docs

“An extension is a python module that contains commands, cogs, or listeners.”

Plugins:

Plugins are simply extensions that have cogs with extra metadata and custom methods called in it. An existing cog can
be converted into a plugin by defining a plugin_data variable in it’s class. However, plugins are not guaranteed to
work as a cog in another discord bot.

To give you a better picture:

• All plugins are extensions, but all extensions are not plugins.

• All cogs work with plugins, but not cogs built specifically for plugins.

Plugin Metadata:

This is simply a local plugin_data variable of type dict defined in a plugin. This defines metadata like the name,
description, status and other properties of a plugin.

Plugin Setup:

This is a local setup() function defined outside the cog’s class. It’s used to do initialize cogs and prepare the plugin
to be imported as an extension. Although it is fairly easy to initialize other cogs and commands directly from the
setup() function, it’s recommended to only place commands that complement each other into the same plugin.

Entities:

Entities are simply discord data model objects that represents anything that for which information can be stored. In
simple terms, entities are any object in discord that can be referenced by an ID.

Entity States:

1.6. Developer Handbook 9

https://github.com/Rapptz/discord.py/tree/rewrite
https://docs.python.org/3.5/library/asyncio.html#module-asyncio
http://discordpy.readthedocs.io/en/rewrite/ext/commands/api.html#discord.ext.commands.Bot.add_cog
https://github.com/Rapptz/discord.py/tree/rewrite
https://github.com/Rapptz/discord.py/tree/rewrite
https://docs.python.org/3.5/library/stdtypes.html#dict
http://discordpy.readthedocs.io/en/rewrite/api.html#discord-models

Enigma Documentation, Release 0.1.0.dev0

These are MongoDB database collections that can store data about a particular entity.

1.6.2 Building Plugins

Building a plugin in enigma is very easy as you will see soon. However, before we start, we need a working bot to
build plugins for. If you haven’t already, setup a bot by following Basic Usage Instructions.

All builtin plugins are stored in the plugins directory found in the root folder and grouped by categories in their
respective folders.

Tutorials

Basic Tutorials

Intermediate Tutorials

Prerequisites

• You will need a MongoDB client like Robo3T or Compass to view collections

• An IDE or code editor like Pycharm, Atom, Sublime etc

• Minimal knowledge of collections, documents, databases and CRUD operations in MongoDB

Contents

Tags

Tags are commands used to save frequently sent messages like rules, instructions and help information in a guild. It’s
a very useful feature and implemented in a lot of bots on discord. So let’s build one for our self.

Before we begin building our plugin, we need an idea of what our command will look like. We want users to be able
to use newlines and any characters without sacrificing usability.

It will look something like this for a user in a guild:

+tag add rules

__**Chat Rules**__

1. An important rule

2. Another rule

__**Voice Chat Rules**__

1. Don't scream in voice chat

2. No trolling

Now that we know what we want our command to look like, let’s create our plugin. Create a tags.py file in the
Plugins/ directory and put this code in it. You can remove the comments if you want.

Warning: There is an existing tags plugin in Plugins/Utilities/tags.py. You should move it to a safe
location in another folder before continuing. You can’t use two cogs with the same name at the same time.

10 Chapter 1. Contents

Enigma Documentation, Release 0.1.0.dev0

import discord
from discord.ext import commands

plugin_data = {
"name": "Tags"

}

class Tag:
def __init__(self, bot):

self.bot = bot
self.data = plugin_data

Easier access to common variables
self.logger = self.bot.logger

@commands.command(
name="tag"

)
@commands.guild_only() # Only allow usage from inside a guild
async def tag(self, ctx, tag: str):

"""
This will take a single parameter tag when someone uses the
command +tag my_tag. Here my_tag will get passed to tag and
ultimately to our logger.
"""
self.logger.debug(f"Tag: {tag})

Now start enigma and send a test command with a tag name to ensure everything works properly. If everything went
smoothly, we need to figure out to how to store data so it can be retrieved later. Not to worry, enigma has made it very
easy to store data without worrying about relational data too much.

We need to use a driver to talk to our database. Don’t worry, Enigma takes care of this for you. But you will need to
be aware that we are using it to do operations on the database.

• Motor Documentation

• PyMongo Documentation

Let’s begin by adding an add sub command to our existing command to allow adding new tags. In order to do this,
we need to use a feature of the discord.py library called Groups. You can learn more about groups here.

class Tag:
def __init__(self, bot):

self.bot = bot
self.data = plugin_data

self.bot.db.database is simply the name of the database
you provided in the app's config file.
self.db is a Database object much similar to what's found in
PyMongo. Except, here we are using the asynchronous version
of the library called Motor.
self.db = self.bot.db[self.bot.db.database]
self.logger = self.bot.logger

Notice this is now group()
Setting invoke_without_command=True makes sure sub commands don't
run the code in this function when they are called.
@commands.group(

(continues on next page)

1.6. Developer Handbook 11

https://motor.readthedocs.io/en/stable/
https://api.mongodb.com/python/current/
http://discordpy.readthedocs.io/en/stable/
http://rapptz.github.io/discord.py/docs/faq.html#how-do-i-make-a-subcommand

Enigma Documentation, Release 0.1.0.dev0

(continued from previous page)

name="tag",
invoke_without_command=True

)
@commands.guild_only()
async def tag(self, ctx, tag: str):

document = await self.db.tags.find_one({"tag": tag})
self.logger.debug(f"Tag: {tag} | Document: {document}")

Notice that we are using the tag coroutine as a decorator here.
@tag.command(name="add")
async def add_tag(self, ctx, tag: str, *, content: commands.clean_content):

"""
Notice the '*' used after the tag param. This will ensure that
the content of the message after the tag won't get passed into
our coroutine. In short, without the '*', it will raise an
error for more than one argument after the tag.

With the '*' it will consider everything after the tag as a
string with newlines and spaces intact. commands.clean_content
also makes sure the input is more clean and will do some
parsing for you.
"""

Let's insert our first document into the collection.
MongoDB is lazy when creating collections. It is a convention
to name collections after the cog or the extension to make it
easier to locate. Here this line will create a tags
collection as well as insert the json file as a document.
self.db.tags.insert_one(

{"guild_id": ctx.guild.id, "tag": tag, "content": content}
)

Run +tag add mytag 123 or something similar (preferably with newlines and spaces as well) from discord to
ensure there are no errors. Then check you MongoDB client to make sure that the document’s were inserted.

If all went well we can add some code to display the tags.

@commands.group(
name="tag",
invoke_without_command=True

)
@commands.guild_only()
async def tag(self, ctx, tag: str):

Find the document with the tag that we inserted earlier
document = await self.db.tags.find_one({"tag": tag})
self.logger.debug(f"Tag: {tag} | Document: {document}")
if document:

Send a message to the guild with the content
await ctx.send(document["content"])

else:
These are embeds that make thinks look prettier. Here we
made a simple error message.
response = discord.Embed(

color=0x7F8C8D,
title=" Tag does not exist! "

)
await ctx.send(embed=response)

(continues on next page)

12 Chapter 1. Contents

Enigma Documentation, Release 0.1.0.dev0

(continued from previous page)

@tag.command(name="add")
async def add_tag(self, ctx, tag: str, *, content: commands.clean_content):

Let's check to make sure the tag doesn't already exist.
document = await self.db.tags.find_one({"tag": tag})
if document:

response = discord.Embed(
color=0x7F8C8D,
title=" Tag already exists! "

)
await ctx.send(embed=response)

else:
self.db.tags.insert_one(

{"guild_id": ctx.guild.id, "tag": tag, "content": content}
)

That wasn’t too hard was it? Let’s add some more commands and functionality to make a full blown plugin. You can
see the full code here.

import discord
from discord.ext import commands

plugin_data = {
"name": "Tags"

}

class Tag:
def __init__(self, bot):

self.bot = bot
self.data = plugin_data

Easier Access
self.db = self.bot.db[self.bot.db.database]
self.logger = self.bot.logger

@commands.group(
name="tag",
invoke_without_command=True

)
@commands.guild_only()
async def tag(self, ctx, tag: str):

document = await self.db.tags.find_one({"tag": tag})
self.logger.debug(f"Tag: {tag} | Document: {document}")
if document:

await ctx.send(document["content"])
else:

response = discord.Embed(
color=0x7F8C8D,
title=" Tag does not exist! "

)
await ctx.send(embed=response)

@tag.command(name="add")
async def add_tag(self, ctx, tag: str, *, content: commands.clean_content):

document = await self.db.tags.find_one({"tag": tag})

(continues on next page)

1.6. Developer Handbook 13

Enigma Documentation, Release 0.1.0.dev0

(continued from previous page)

if document:
response = discord.Embed(

color=0x7F8C8D,
title=" Tag already exists! "

)
await ctx.send(embed=response)

else:
self.db.tags.insert_one(

{"guild_id": ctx.guild.id, "tag": tag, "content": content}
)

@tag.group(
name="delete",
invoke_without_command=True

)
async def delete_tag(self, ctx, tag: str):

document = await self.db.tags.find_one({"tag": tag})
if document:

await self.db.tags.delete_one({"tag": tag})
else:

response = discord.Embed(
color=0x7F8C8D,
title=" Tag not found! "

)
await ctx.send(embed=response)

@tag.command(name="list")
async def list_tags(self, ctx):

tags = []
async for document in self.db.tags.find({"guild_id": ctx.guild.id}):

tags.append(document["tag"])
if len(tags) > 0:

await ctx.send("\n".join(tags))
else:

response = discord.Embed(
color=0x7F8C8D,
title=" No tags to list! "

)
await ctx.send(embed=response)

@delete_tag.command(name="all")
async def delete_all_tags(self, ctx):

await self.db.tags.delete_many({"guild_id": ctx.guild.id})
response = discord.Embed(

color=0x7F8C8D,
title=" All tags deleted! "

)
await ctx.send(embed=response)

def setup(bot):
bot.add_cog(Tag(bot))

Congratulations! You reached the end of this tutorial. You should now have sufficient knowledge to make more kinds
of plugins.

14 Chapter 1. Contents

Enigma Documentation, Release 0.1.0.dev0

Advanced Tutorials

1.7 enigma

1.7.1 enigma package

Subpackages

enigma.commands package

Submodules

enigma.commands.start module

Module contents

Submodules

enigma.app module

enigma.client module

enigma.utils module

enigma.utils.find_members(ctx)
Parses arguments passed to a command and returns a list of me

Parameters ctx – pass a discord.ext.commands.Context object

Returns a list of discord.Member objects

enigma.utils.get_command_args(ctx, lower_case=True)
Gets the arguments passed to a command.

Parameters

• ctx – pass a discord.ext.commands.Context object

• lower_case – returns arguments in lower case

Returns list

Module contents

1.7. enigma 15

http://discordpy.readthedocs.io/en/rewrite/ext/commands/api.html#discord.ext.commands.Context
http://discordpy.readthedocs.io/en/rewrite/api.html#discord.Member
http://discordpy.readthedocs.io/en/rewrite/ext/commands/api.html#discord.ext.commands.Context
https://docs.python.org/3.5/library/stdtypes.html#list

Enigma Documentation, Release 0.1.0.dev0

16 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

17

Enigma Documentation, Release 0.1.0.dev0

18 Chapter 2. Indices and tables

Python Module Index

e
enigma, 15
enigma.utils, 15

19

Enigma Documentation, Release 0.1.0.dev0

20 Python Module Index

Index

E
enigma (module), 15
enigma.utils (module), 15

F
find_members() (in module enigma.utils), 15

G
get_command_args() (in module enigma.utils), 15

21

	Contents
	License
	Contributors
	Contributing
	Installation
	User Manual
	Developer Handbook
	enigma

	Indices and tables
	Python Module Index

